A one-to-one function, also known as an injective function, is a function where each element of the range (output) corresponds to a unique element of the domain (input). In simpler terms, no two different elements in the domain map to the same element in the range.
Here's a breakdown of key aspects:
Definition: A function f is one-to-one if for any a and b in the domain of f, if f(a) = f(b), then a = b. This can also be expressed as: if a ≠ b, then f(a) ≠ f(b). For more information: https://www.wikiwhat.page/kavramlar/Definition%20of%20One-to-One%20Function
Horizontal Line Test: A graphical test to determine if a function is one-to-one. If any horizontal line intersects the graph of the function at more than one point, the function is not one-to-one. For more information: https://www.wikiwhat.page/kavramlar/Horizontal%20Line%20Test
Inverse Function: A one-to-one function has an https://www.wikiwhat.page/kavramlar/Inverse%20Function. Only one-to-one functions are invertible. The inverse function "undoes" the original function.
Examples:
Importance: One-to-one functions are important in various areas of mathematics, including calculus, linear algebra, and cryptography. Their invertibility is a crucial property.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page